当前位置:网站首页>21 Days of Deep Learning - Convolutional Neural Networks (CNN): Clothing Image Classification (Day 3)
21 Days of Deep Learning - Convolutional Neural Networks (CNN): Clothing Image Classification (Day 3)
2022-08-05 09:14:00 【Qingyuan Warm Song】
Table of Contents
1.1 Image input form of convolutional neural network
1.3 class_names[np.argmax(pre[1])]
First, new learning
1.1 Image input form of convolutional neural network
The input of the convolutional neural network (CNN) is in the form of a tensor (image_height, image_width,
color_channels), which contains the image height, width and color information.There is no need to enter batch size.color_channels is (R, G, B) corresponding to the three color channels of RGB respectively.In this example, our CNN input, a picture from the fashion_mnist dataset, is of shape (28, 28, 1) i.e. a grayscale image.We need to assign the shape to the parameter input_shape when declaring the first layer.
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #convolution layer 1, convolution kernel 3*3layers.MaxPooling2D((2, 2)), #pooling layer 1, 2*2 samplinglayers.Conv2D(64, (3, 3), activation='relu'), #Convolution layer 2, convolution kernel 3*3layers.MaxPooling2D((2, 2)), #pooling layer 2, 2*2 samplinglayers.Conv2D(64, (3, 3), activation='relu'), #Convolution layer 3, convolution kernel 3*3layers.Flatten(), #Flatten layer, connecting the convolutional layer and the fully connected layerlayers.Dense(64, activation='relu'), #Full connection layer, further feature extractionlayers.Dense(10) #Output layer, output expected result])model.summary() # print network structureSo in the convolutional layer 1, the shape value of the image should be passed in
1.2 About compilation
Before you are ready to train your model, you need to set it up a bit more.The following is added in the compilation step of the model:
(1) loss function (loss): used to measure the accuracy of the model during training.You will want to minimize this function in order to "steer" the model in the right direction.
Loss functions include predicted value and actual squared difference (binary cross entropy), mean squared difference, etc.
(2) Optimizer ((optimizer): Determines how the model is updated based on the data it sees and its own loss function.
Help update parameters in real time
(3) metrics: used to monitor training and testing steps.The following examples use accuracy, which is the ratio of images that are correctly classified.
1.3 class_names[np.argmax(pre[1])]
See below
import numpy as npa = np.array([3, 1, 2, 4, 6, 1])b=np.argmax(a)# Take out the index corresponding to the maximum value of the element in a. At this time, the maximum value is 6, and the corresponding position index value is 4, (the index value starts from 0 by default)print(b)#4Reference: np.argmax()_wanghua609's blog-CSDN blog_np.argmax
So np.argmax(pre[1]) is the index value i of the maximum confidence of the first image in the test set for the clothing in 10
From class_names[ i ]: take out the name
边栏推荐
- selectPage 动态改变参数方法
- tensorflow.keras无法引入layers
- 工程制图直线投影练习
- Moonbeam团队发布针对整数截断漏洞的紧急安全修复
- 手机上流行的各类谜语
- Creo 9.0 基准特征:基准点
- leetcode points to Offer 10- I. Fibonacci sequence
- Example of Noise Calculation for Amplifier OPA855
- 使用稀疏 4D 卷积对 3D LiDAR 数据中的运动对象进行后退分割(IROS 2022)
- Xcode 12 ld: symbol(s) not found for architecture armv64
猜你喜欢

画法几何及工程制图考试卷A卷

There is only one switch, how to realize the nqa of master-slave automatic switching

【LeetCode】623. Add a row to the binary tree

【ASM】字节码操作 方法的初始化 Frame

Xcode10的打包方式distribute app和启动项目报错以及Xcode 打包本地ipa包安装到手机上

Two-table query average grouping in sql server

eKuiper Newsletter 2022-07|v1.6.0:Flow 编排 + 更好用的 SQL,轻松表达业务逻辑

使用稀疏 4D 卷积对 3D LiDAR 数据中的运动对象进行后退分割(IROS 2022)

嵌入式实操----基于RT1170 移植memtester做SDRAM测试(二十五)

Creo 9.0 基准特征:基准点
随机推荐
全面讲解GET 和 POST请求的本质区别是什么?原来我一直理解错了
嵌入式实操----基于RT1170 移植memtester做SDRAM测试(二十五)
k-nearest neighbor fault monitoring based on multi-block information extraction and Mahalanobis distance
【Excel实战】--图表联动demo_001
欧盟 | 地平线 2020 ENSEMBLE:D2.13 SOTIF Safety Concept(下)
干货!生成模型的评价与诊断
并发之CAS
“充钱”也难治快手的“亏亏亏”?
Linux导出数据库数据到硬盘
CCVR eases heterogeneous federated learning based on classifier calibration
【LeetCode】623. 在二叉树中增加一行
百行代码发射红心,程序员何愁命不中女朋友!
Dry goods!Generative Model Evaluation and Diagnosis
NC20164 :最大数MAXNUMBER [线段树]
基因数据平台
DPU — 功能特性 — 网络系统的硬件卸载
工程制图试题
thinkPHP5 实现点击量(数据自增/自减)
Xcode 12 ld: symbol(s) not found for architecture armv64
让程序员崩溃的N个瞬间(非程序员误入)