当前位置:网站首页>MNIST model training (with code)

MNIST model training (with code)

2022-06-21 14:51:00 Clan return

Get the github Address 1:https://github.com/Att100/CIFAR10_Pytorch.
Get the github Address 2:https://github.com/chenyaofo/pytorch-cifar-models.

Training demonstration

Environmental Science :

python=3.6 ~ 3.8
Package                 Version
----------------------- ---------
torch                   1.10.1
torchvision             0.11.2
tqdm                    4.62.3

File directory shows :

root directory :
 Insert picture description here
This data The file will be automatically created and downloaded when running the training code .
model The files in are AlexNet Of py file

The model code :AlexNet.py

import torch
import torch.nn as nn
import torch.nn.functional as F


class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        self.Conv2d_1 = nn.Conv2d(kernel_size=3, in_channels=1, out_channels=96, padding=1)
        self.bn_1 = nn.BatchNorm2d(96)
        self.maxpool_1 = nn.MaxPool2d((3, 3), stride=2, padding=1)

        self.Conv2d_2 = nn.Conv2d(kernel_size=5, in_channels=96, out_channels=256, padding=2)
        self.bn_2 = nn.BatchNorm2d(256)
        self.maxpool_2 = nn.MaxPool2d((3, 3), stride=2, padding=1)

        self.Conv2d_3 = nn.Conv2d(kernel_size=3, in_channels=256, out_channels=384, padding=1)
        self.Conv2d_4 = nn.Conv2d(kernel_size=3, in_channels=384, out_channels=384, padding=1)
        self.Conv2d_5 = nn.Conv2d(kernel_size=3, in_channels=384, out_channels=256, padding=1)
        self.bn_3 = nn.BatchNorm2d(256)
        self.maxpool_3 = nn.MaxPool2d((3, 3), stride=2, padding=1)

        self.fc_1 = nn.Linear(4*4*256, 2048)
        self.dp_1 = nn.Dropout()
        self.fc_2 = nn.Linear(2048, 1024)
        self.dp_2 = nn.Dropout()
        self.fc_3 = nn.Linear(1024, 10)

    def forward(self, x):
        x = self.Conv2d_1(x)
        x = self.bn_1(x)
        x = F.relu(x)
        x = self.maxpool_1(x)

        x = self.Conv2d_2(x)
        x = self.bn_2(x)
        x = F.relu(x)
        x = self.maxpool_2(x)

        x = F.relu(self.Conv2d_3(x))
        x = F.relu(self.Conv2d_4(x))
        x = F.relu(self.Conv2d_5(x))
        x = self.bn_3(x)
        x = F.relu(x)
        x = self.maxpool_3(x)

        x = x.view(-1, 4*4*256)
        x = F.relu(self.fc_1(x))
        x = self.dp_1(x)
        x = F.relu(self.fc_2(x))
        x = self.dp_2(x)
        x = self.fc_3(x)
        return x

Training code :train_alexnet.py

import torch
import codecs
import itertools
import torch.nn.init as init
import torch.nn as nn
from tqdm import tqdm
from model import AlexNet
import torchvision.utils as utils
import torch.optim as optim
from torchvision import datasets
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torchvision.transforms as transforms


transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])

train_mnist = DataLoader(datasets.MNIST('data', train=True, download=True, transform=transform), batch_size=128, shuffle=True)

alexNet = AlexNet.AlexNet()


learning_rate = 0.001
momentum = 0.9
epoches = 200

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

alexNet = alexNet.to(device)

# optimizer and loss function
optimizer = optim.SGD(alexNet.parameters(), lr=learning_rate, momentum=momentum, weight_decay=1e-5)
loss_func = torch.nn.CrossEntropyLoss()

for epoch in range(epoches):
	train_mnist = tqdm(train_mnist)
	running_loss = 0.0
	for inputs, labels in train_mnist:
		inputs,labels = inputs.to(device),labels.to(device)
		# ============= forward =============
		outputs = alexNet(inputs)
		# ============= backward ============
		optimizer.zero_grad()
		loss = loss_func(outputs, labels)
		loss.backward()
		optimizer.step()
		# ============= log information =====
		running_loss += loss.item()
		description = 'epoch: %d , current_loss: %.4f, running_loss: %.4f' % (epoch, loss.item(), running_loss)
		train_mnist.set_description(description)
		train_mnist.update()

	torch.save(alexNet.state_dict(), './checkpoint/checkpoint_' + str(epoch) + '.pt')

Test model generalization performance code : test_model_accuracy.py

import torch
import codecs
import itertools
import torch.nn.init as init
import torch.nn as nn
from tqdm import tqdm
from model import AlexNet
import torchvision.utils as utils
import torch.optim as optim
from torchvision import datasets
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torchvision.transforms as transforms

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])

train_mnist = DataLoader(datasets.MNIST('data', train=False, download=True, transform=transform), batch_size=128, shuffle=True)

alexNet = AlexNet.AlexNet()

alexNet.load_state_dict(torch.load("./checkpoint/checkpoint_10.pt", map_location=device))



alexNet = alexNet.to(device)
alexNet = alexNet.eval()

with torch.no_grad():
    train_mnist = tqdm(train_mnist)
    total = 0
    correct = 0
    for inputs, labels in train_mnist:
            inputs,labels = inputs.to(device),labels.to(device)
            # ============= forward =============
            outputs = alexNet(inputs)
            # ============= precision ===========
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
            description = 'correct: %.4f, total: %.4f , accuracy: %.4f' % (correct, total, correct/total)
            train_mnist.set_description(description)
            train_mnist.update()
            
            


Super massive visual model :https://github.com/52CV/CVPR-2021-Papers.

原网站

版权声明
本文为[Clan return]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202221338087035.html