当前位置:网站首页>Diagonalization, power of a
Diagonalization, power of a
2022-07-25 18:18:00 【I don't know anything about Phuket】
One 、 Diagonalization of matrix and its conditions
1.2 Diagonalization of matrix
The square array A A A The eigenvector of is put into a new matrix S S S, So there are :
A S = A [ c 1 c 2 ⋯ c n ] = [ λ 1 c 1 ⋯ λ n c n ] = [ c 1 c 2 ⋯ c n ] [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ λ n ] = A Λ (1) \begin{aligned} AS&=A\begin{bmatrix}c_1&c_2&\cdots&c_n\end{bmatrix}\\&=\begin{bmatrix}\lambda_1c_1&\cdots&\lambda_nc_n\end{bmatrix}\\ &=\begin{bmatrix}c_1&c_2&\cdots& c_n\end{bmatrix}\begin{bmatrix}\lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\ \cdots&\cdots&\cdots&\cdots\\ \cdots&\cdots&\cdots&\lambda_n\end{bmatrix}=A\Lambda \end{aligned}\tag{1} AS=A[c1c2⋯cn]=[λ1c1⋯λncn]=[c1c2⋯cn]⎣⎡λ10⋯⋯0λ2⋯⋯⋯⋯⋯⋯00⋯λn⎦⎤=AΛ(1)
There is a :
A S = S Λ (2) AS=S\Lambda\tag{2} AS=SΛ(2)
Because eigenvectors are linearly independent , therefore :
S − 1 A S = Λ (3) S^{-1}AS=\Lambda\tag{3} S−1AS=Λ(3)
The following is the equivalent expression , That is the important formula of matrix diagonalization in our lesson :
A = S Λ S − 1 (4) A=S\Lambda S^{-1}\tag{4} A=SΛS−1(4)
This is another method of matrix decomposition : A matrix is divided into a matrix composed of eigenvalue vectors and a matrix composed of eigenvalues . Such decomposition , It makes it feasible for us to solve the power of the matrix .
from (3) There are the following conclusions :
A x = λ x A 2 x = λ A x = λ 2 x ⋯ A n x = λ n x (5) Ax=\lambda x\\ A^2x=\lambda Ax=\lambda^2x\\ \cdots\\ A^{n}x=\lambda^nx\tag{5} Ax=λxA2x=λAx=λ2x⋯Anx=λnx(5)
from (4) Yes :
A 2 = S Λ S − 1 S Λ S − 1 = S Λ 2 S − 1 A k = S Λ k S − 1 (6) A^2=S\Lambda S^{-1}S\Lambda S^{-1}=S\Lambda^2S^{-1}\\ A^k=S\Lambda^kS^{-1}\tag{6} A2=SΛS−1SΛS−1=SΛ2S−1Ak=SΛkS−1(6)
The existence of eigenvalues gives us an expression for calculating the power of a matrix , Be careful Matrix diagonalization condition yes : There is n n n Two independent eigenvectors .
Theorem : hypothesis A A A There is n n n Two independent eigenvectors , When k → ∞ k\rightarrow\infin k→∞, A k → 0 A^k\rightarrow0 Ak→0 Is the condition of :
∀ ∣ λ i ∣ < 1 (7) \forall \quad \vert\lambda_i\vert<1\tag{7} ∀∣λi∣<1(7)
Such a matrix A A A It is stable. .
Since there are so many good properties of diagonalization , So what kind of matrix can be diagonalized ? Here is the conclusion :
A A A There must be n n n Two independent vectors ( Or it can be diagonalized (diagnalizable)), If the following conditions are met :
- all λ \lambda λ Are different ( That is, there is no repetition λ \lambda λ, The textbook has proof )
Whether repeated eigenvalues must not be diagonalized ? answer : Look at the situation . The following is the two clock situation .
Example 1: Unit matrix I = [ 1 0 0 0 1 0 0 0 1 ] I=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix} I=⎣⎡100010001⎦⎤, There are three eigenvalues , All are 1, But all vectors are their eigenvectors , Take whatever you like 3 Just one .
Example 2: For a triangular matrix A = [ 2 1 0 2 ] A=\begin{bmatrix}2&1\\0&2\end{bmatrix} A=[2012] The eigenvalue of is 2 and 2, Then find its eigenvector A − 2 I = [ 0 1 0 0 ] A-2I=\begin{bmatrix}0&1\\0&0\end{bmatrix} A−2I=[0010], The zero space of this matrix is a zero vector , The eigenvector is x 1 = [ 1 0 ] x_1=\begin{bmatrix}1\\0\end{bmatrix} x1=[10], Because I can't find 2 Linear independent vectors , No diagonalization .
Two 、 Application of diagonalization
If x i x_i xi yes A A A An eigenvector , that k x i kx_i kxi( k ≠ 0 k\neq 0 k=0) It's also its eigenvector .
A vector u 0 u_0 u0 It's a matrix A A A Eigenvector x i x_i xi The linear combination of :
u 0 = c 1 x 1 + c 2 x 2 + ⋯ + c n x n (8) u_0=c_1x_1+c_2x_2+\dots+c_nx_n\tag{8} u0=c1x1+c2x2+⋯+cnxn(8)
Matrix form :
u 0 = S c (9) u_0=Sc\tag{9} u0=Sc(9)
For everyone after u k u_k uk Through the general term :
u k + 1 = A u k (10) u_{k+1}=Au_k\tag{10} uk+1=Auk(10)
Find out , Concrete :
u 1 = A u 0 u 2 = A 2 u 0 ⋯ u k = A k u 0 (10) u_1=Au_0\\ u_2=A^2u_0\\ \cdots\\ u_k=A^ku_0\tag{10} u1=Au0u2=A2u0⋯uk=Aku0(10)
u 1 = A u 0 = c 1 λ 1 x 1 + c 2 λ 2 x 2 + ⋯ + c n λ n x n u 100 = A 100 u 0 = c 1 λ 1 100 x 1 + c 2 λ 2 100 x 2 + ⋯ + c n λ n 100 x n (11) u_1=Au_0=c_1\lambda_1x_1+c_2\lambda_2x_2+\cdots+c_n\lambda_nx_n\\ u_{100}=A^{100}u_0=c_1\lambda_1^{100}x_1+c_2\lambda_2^{100}x_2+\cdots+c_n\lambda_n^{100}x_n\tag{11} u1=Au0=c1λ1x1+c2λ2x2+⋯+cnλnxnu100=A100u0=c1λ1100x1+c2λ2100x2+⋯+cnλn100xn(11)
In matrix form :
u 0 = S c u 100 = u 0 A 100 = Λ 100 S c (12) u_0=Sc\\ u_{100}=u_0A^{100}=\Lambda^{100}Sc\tag{12} u0=Scu100=u0A100=Λ100Sc(12)
Here will be the initial vector u 0 u_0 u0 Expand into a linear combination of several eigenvectors , So we can deduce u 100 u_{100} u100 Result .
Fibonacci sequence (Fibonacci) Example :
0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 ⋯ F 100 0,1,1,2,3,5,8,13\cdots F_{100} 0,1,1,2,3,5,8,13⋯F100
How to put the first 100 How to calculate Fibonacci number and its growth rate ?
answer : Growth rate 、 The convergence 、 Stability is determined by eigenvalues , The recurrence formula is given below :
F k + 2 = F k + 1 + F k (13) F_{k+2}=F_{k+1}+F_k\tag{13} Fk+2=Fk+1+Fk(13)
This equation is not only related to the previous value F k F_k Fk of , And also with the value of the previous F k F_k Fk of , It is a second-order difference equation .(13) You can also add a condition :
F k + 2 = F k + 1 + F k F k + 1 = F k + 1 (14) F_{k+2}=F_{k+1}+F_k\\ F_{k+1}=F_{k+1} \tag{14} Fk+2=Fk+1+FkFk+1=Fk+1(14)
In matrix form :
[ F k + 2 F k + 1 ] = [ 1 1 1 0 ] [ F k + 1 F k ] \begin{bmatrix}F_{k+2}\\F_{k+1}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}\begin{bmatrix}F_{k+1}\\F_k\end{bmatrix} [Fk+2Fk+1]=[1110][Fk+1Fk]
Here we use a little trick to transform the second-order equation “ drop ” Is a first-order equation :
u k = [ F k + 1 F k ] u k + 1 = [ u k + 2 u k + 1 ] (15) u_k=\begin{bmatrix}F_{k+1}\\F_k\end{bmatrix}\\ u_{k+1}=\begin{bmatrix}u_{k+2}\\u_{k+1}\end{bmatrix}\tag{15} uk=[Fk+1Fk]uk+1=[uk+2uk+1](15)
Plug in (14) Yes :
u k + 1 = [ 1 1 1 0 ] u k (16) u_{k+1}=\begin{bmatrix}1&1\\1&0\end{bmatrix}u_k\tag{16} uk+1=[1110]uk(16)
from : ∣ A − λ I ∣ = − λ 2 − λ + 1 = 0 \vert A-\lambda I\vert=-\lambda^2-\lambda+1=0 ∣A−λI∣=−λ2−λ+1=0 The eigenvalues can be obtained as :
λ 1 = 1 + 5 2 ≈ 1.618 λ 2 = 1 − 5 2 ≈ 0.618 (17) \lambda_1=\frac{1+\sqrt{5}}{2}\approx1.618\\ \lambda_2=\frac{1-\sqrt{5}}{2}\approx0.618\tag{17} λ1=21+5≈1.618λ2=21−5≈0.618(17)
The corresponding eigenvector is :
[ 1 − λ 1 1 − λ ] x = 0 (18) \begin{bmatrix}1-\lambda&1\\1&-\lambda\end{bmatrix}x=0\tag{18} [1−λ11−λ]x=0(18)
x = [ λ 1 ] x=\begin{bmatrix}\lambda\\1\end{bmatrix} x=[λ1] yes (18) Eigenvector of , This is because :
A x = [ − λ 2 − λ + 1 0 ] = [ 0 0 ] (19) Ax=\begin{bmatrix}-\lambda^2-\lambda+1\\0\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}\tag{19} Ax=[−λ2−λ+10]=[00](19)
This is because − λ 2 − λ + 1 = 0 -\lambda^2-\lambda+1=0 −λ2−λ+1=0 Exactly equal to the characteristic root equation .
x 1 = [ 1.618 1 ] x 2 = [ 0.618 1 ] (20) x_1=\begin{bmatrix}1.618\\1\end{bmatrix}\quad x_2=\begin{bmatrix}0.618\\1\end{bmatrix}\tag{20} x1=[1.6181]x2=[0.6181](20)
In order to take advantage of the previous conclusion , We need to set the initial value u 0 u_0 u0 use A A A Linear combination representation of eigenvectors of matrix , Suppose this linear combination is c 0 c_0 c0 and c 1 c_1 c1
u 0 = c 1 x 1 + c 0 x 2 (21) u_0=c_1x_1+c_0x_2\tag{21} u0=c1x1+c0x2(21)
It doesn't matter what the result is . Let's review the whole problem-solving logic :
- Convert the second-order difference equation into the first-order difference equation , The purpose is to apply the power characteristics of the first-order difference equation
- Determine that the obtained eigenvalues and eigenvectors can be used to represent u 0 u_0 u0
- If the second step exists , So there are u k = A 100 u 0 = c 1 λ 1 100 x 1 + c 2 λ 2 100 x 2 + ⋯ + c n λ n 100 x n u_k=A^{100}u_0=c_1\lambda_1^{100}x_1+c_2\lambda_2^{100}x_2+\cdots+c_n\lambda_n^{100}x_n uk=A100u0=c1λ1100x1+c2λ2100x2+⋯+cnλn100xn
Because this is only a second-order matrix , therefore :
u k = c 1 λ 1 100 x 1 + c 2 λ 2 100 x 2 (22) u_k=c_1\lambda_1^{100}x_1+c_2\lambda_2^{100}x_2\tag{22} uk=c1λ1100x1+c2λ2100x2(22)
For this example :
u 100 = c 1 ( 0.618 ) 100 + c 2 ( 1.618 ) 100 (23) u_{100}=c_1(0.618)^{100}+c_2(1.618)^{100}\tag{23} u100=c1(0.618)100+c2(1.618)100(23)
Simple analysis , As the order increases , The eigenvalue is less than 1 Of (0.618) The impact will be smaller and smaller , So the eigenvalue of the decisive factor is the larger one (1.618).
边栏推荐
- "Digital security" alert NFT's seven Scams
- 国际权威认可!OceanBase入选Forrester Translytical数据平台报告
- srec_ Use of common cat parameters
- 「行话」| 用DevOps高效交付游戏,是种什么体验?
- 对角化、A的幂
- Keil5 “Loading PDSC Debug Description Failed for STMicroelectronics STM32Hxxxxxxx”解决办法
- The new version of 3dcat v2.1.3 has been released. You can't miss these three function updates!
- Basic operation of bidirectional linked list
- Is there any inconspicuous but profitable sideline?
- Which real-time gold trading platform is reliable and safe?
猜你喜欢

Related operations of binary tree

Keil5 “Loading PDSC Debug Description Failed for STMicroelectronics STM32Hxxxxxxx”解决办法

Introduction to cloud XR and development opportunities of cloud XR in 5g Era

Connect to MySQL using sqldeveloper

Talking about Devops monitoring, how does the team choose monitoring tools?

1--- electronic physical cognition

Ch582 ble 5.0 uses Le coded broadcast and connection

Pan domain name configuration method

"Jargon" | what kind of experience is it to efficiently deliver games with Devops?

如何判断静态代码质量分析工具的性能?这五大因素必须考虑
随机推荐
Joseph Ring problem
Keil5 “Loading PDSC Debug Description Failed for STMicroelectronics STM32Hxxxxxxx”解决办法
遍历数组的方法有哪些?for循环 forEach for/in for/of map的性能又有什么差别 该如何选择?
云VR:虚拟现实专业化的下一步
乐观锁解析
C语言 cJSON库的使用
Why is the index in [mysql] database implemented by b+ tree? Is hash table / red black tree /b tree feasible?
Construction of Huffman tree
Problems faced by cloud XR and main application scenarios of cloud XR
C language libcurl cross compilation
What is the relationship between cloud fluidization and cloud desktop
tkinter GUI版通信录管理系统
如何判断静态代码质量分析工具的性能?这五大因素必须考虑
二叉树的相关操作
List转换问题
对角化、A的幂
STM8S003F3 uart的使用
Connect to MySQL using sqldeveloper
408 Chapter 2 linear table
UnitTest框架应用